Biaxial Buckling Analysis of Symmetric Functionally Graded Metal Cored Plates Resting on Elastic Foundation under Various Edge Conditions Using Galerkin Method

Authors

  • M Rezaei Department of Mechanical Engineering, School of Engineering, Yasouj University, Yasouj, Iran
  • S Shoja Department of Civil Engineering, School of Engineering, Yasouj University, Yasouj, Iran
  • S Ziaee Department of Mechanical Engineering, School of Engineering, Yasouj University, Yasouj, Iran
Abstract:

In this paper, buckling behavior of symmetric functionally graded plates resting on elastic foundation is investigated and their critical buckling load in different conditions is calculated and compared. Plate governing equations are derived using the principle of minimum potential energy. Afterwards, displacement field is solved using Galerkin method and the proposed process is examined through numerical examples. Effect of FGM power law index, plate aspect ratio, elastic foundation stiffness and metal core thickness on critical buckling load is investigated. The accuracy of this approach is verified by comparing its results to those obtained in another work, which is performed using Fourier series expansion.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Buckling of Rectangular Functionally Graded Material Plates under Various Edge Conditions

In the present paper, the buckling problem of rectangular functionally graded (FG) plate with arbitrary edge supports is investigated. The present analysis is based on the classical plate theory (CPT) and large deformation is assumed for deriving stability equations. The plate is subjected to bi-axial compression loading. Mechanical properties of FG plate are assumed to vary continuously along ...

full text

Buckling and Free Vibration Analysis of Fiber Metal-laminated Plates Resting on Partial Elastic Foundation

This research presents, buckling and free vibration analysis of fiber metal-laminated (FML) plates on a total and partial elastic foundation using the generalized differential quadrature method (GDQM). The partial foundation consists of multi-section Winkler and Pasternak type elastic foundation. Taking into consideration the first-order shear deformation theory (FSDT), FML plate is modeled and...

full text

Thermo-Elastic Analysis of Non-Uniform Functionally Graded Circular Plate Resting on a Gradient Elastic Foundation

Present paper is devoted to stress and deformation analyses of heated variable thickness functionally graded (FG) circular plate with clamped supported, embedded on a gradient elastic foundation and subjected to non-uniform transverse load. The plate is coupled by an elastic medium which is simulated as a Winkler- Pasternak foundation with gradient coefficients in the radial and circumferential...

full text

Free Vibration Analyses of Functionally Graded CNT Reinforced Nanocomposite Sandwich Plates Resting on Elastic Foundation

In this paper, a refined plate theory is applied to investigate the free vibration analysis of functionally graded nanocomposite sandwich plates reinforced by randomly oriented straight carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses only four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, and satis...

full text

Thermal buckling analysis of ceramic-metal functionally graded plates

Thermal buckling response of functionally graded plates is presented in this paper using sinusoidal shear deformation plate theory (SPT). The material properties of the plate are assumed to vary according to a power law form in the thickness direction. Equilibrium and stability equations are derived based on the SPT. The non-linear governing equations are solved for plates subjected to simply s...

full text

On Symmetric and Asymmetric Buckling Modes of Functionally Graded Annular Plates under Mechanical and Thermal Loads

In the present article, buckling analysis of functionally graded annular thin and moderately thick plates under mechanical and thermal loads is investigated. The equilibrium and stability equations of the plate are obtained based on both classical and first order shear deformation plate theories. By using an analytical method, the coupled stability equations are converted to independent equatio...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 4

pages  821- 831

publication date 2017-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023